
1. Introduction
Extreme heat events threaten the well-being of both the built and natural world. It is therefore important 
to study how these events will change under global warming. Changes in temperature extremes have been 
studied at scales ranging from local to global (e.g., Diffenbaugh & Ashfaq, 2010; Fischer & Schär, 2009; 
Hansen et  al.,  2012; Tingley & Huybers,  2013). Many of these studies have compared past temperature 
probability (or frequency) distribution functions (PDFs) with recent or projected future PDFs, focusing es-
pecially on changes in the likelihood of extreme heat events (e.g., Diffenbaugh & Ashfaq, 2010; Diffenbaugh 
& Charland, 2016; Diffenbaugh & Scherer, 2011; Fischer et al., 2013; Hansen et al., 2012; Wang et al., 2015). 
The consensus emerging from these studies is that extreme temperature events will occur more often and 
become (on average) more extreme. However, it is often unclear whether and to what extent these changes 
arise from shifts in the distribution mean relative to changes in the distribution shape.

Despite robust conclusions that mean state warming contributes to the increased likelihood of extreme 
heat events over the historical period and/or in future projections (e.g., Diffenbaugh et al., 2017; Donat & 
Alexander, 2012; McKinnon et al., 2016), some (especially regional) studies have reported that changes in 
variability and/or higher-order statistical moments are critical for changes in the occurrence frequency of 
record-breaking heat events (e.g., Ballester et al., 2010; Chan et al., 2020; Della-Marta et al., 2007; Kodra & 
Ganguly, 2014; Schär et al., 2004), whereas other studies have argued that changes in higher-order moments 
are generally insignificant, or inconsistent (e.g., Donat & Alexander, 2012; Gross et al., 2018; McKinnon 
et al., 2016; Rhines & Huybers, 2013). The global spatial distribution of changes in the warm tail in relation 
to changes in the mean is even less conclusive. Local metrics for both the tail and the mean of the distri-
bution are required to fully reveal changes in the local asymmetry, and comparing annual-maximum daily 
maximum temperature to the global mean temperature (instead of the local mean) does not reveal changes 
in the local distribution shape (e.g., Vogel et al., 2017).

Several factors complicate interpretation of existing results and understanding of future changes in the 
temperature distribution shape. First, the temperature distribution varies across different time scales and 
temperature metrics (e.g., Sulikowska & Wypych, 2020). It is difficult to reconcile results based on annual 
means (e.g., Diffenbaugh & Charland, 2016; Diffenbaugh & Scherer, 2011) with those based on seasonal 
means (e.g., Wang et al., 2015), or annual-maximum daily means or maxima (e.g., Diffenbaugh & Char-
land, 2016; Donat et al., 2017). Changes in the distribution shape may likewise differ by season (e.g., Chan 
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et al., 2020; Rhines et al., 2017). Second, the use of aggregated samples, regional averages, or individual grid 
cells when constructing percentiles can also impact the results and their interpretation. Third, some studies 
have used multidecadal time series from the Representative Concentration Pathway and/or historical ob-
servations to calculate and compare distributions without removing trends (e.g., Hansen et al., 2012; Kodra 
& Ganguly, 2014). This may introduce biases in the variability because trends in the mean state contribute 
to the spread in a multiyear PDF (Rhines & Huybers, 2013; see also Della-Marta et al., 2007, their Figure 3). 
Moreover, sampling the upper percentiles of all summer days spanning decades (e.g., Clark et al., 2006) 
is likely to make the sampled days dominated by the warmest part of the seasonal cycle. Interpretation of 
changes in the shapes of PDFs constructed this way may be complicated by changes in the seasonal cycle.

Considering these factors, we focus on the summer season, when the potential for heat waves to bring 
lethal health or agricultural impacts is greatest. We use daily data and construct our methodology to avoid 
sampling only the hottest part of the seasonal cycle (see Section 2.2 for details). We also use outputs from 
piControl simulations and the equilibrated stages of abrupt-4 × CO2 experiments to avoid artificial broad-
ening of the distributions due to trends in the mean state.

We investigate how the hottest summertime temperatures change relative to summer-mean temperatures 
at each location on the globe, which measures how extreme temperatures at each location evolve due to 
changes in the distribution “shape.” We compare spatial patterns of this “shape effect” and the summertime 
mean change, and find that the characteristic features can be jointly linked to local surface properties. These 
results are reported in Section 3.1. We further assess how underlying surface fluxes change over different 
surface conditions, paying particular attention to changes in evapotranspiration (Sections 3.2 and 3.3). We 
summarize and discuss the results in Sections 4 and 5.

2. Data and Methodology
2.1. Model Outputs

We use the Climate Model Intercomparison Project Phase 5 (CMIP5) model outputs to analyze projected 
changes in temperature distribution. Specifically, we take daily output from the preindustrial control (pi-
Control) experiment as the unperturbed state and contrast it against daily output from simulations subject-
ed to an abrupt quadrupling of CO2 (abrupt-4 × CO2; 4 × CO2 for short) as the warmed state (see Taylor 
et al., 2012, for details of experiment design). We use only the last 50 years from each simulation, after the 
models have approximately reached equilibrium. We focus on the summer season because of its relevance to 
heat risk; changes in winter season are influenced by different processes and show different patterns. Here, 
we define summer as June, July, and August (JJA; 92 days) for all locations in the Northern Hemisphere 
and December, January, and February (DJF; 90 days) for all locations in the Southern Hemisphere. This 
definition of summer is an idealization, especially for tropical and subtropical regions where the seasonality 
of surface air temperature is less pronounced. However, our sampling approach for extreme temperatures 
(see Section 2.2) is designed to mitigate sensitivity to the seasonal cycle. Interestingly, although the seasonal 
cycle of mean temperature does not peak in solstice seasons in the tropics, the extreme-relative-to-mean 
temperature increase (the amplification) does. The reason is related to soil moisture and will be elaborated 
in a forthcoming paper. For the current paper, we only show results for JJA/DJF.

Our analysis is based on outputs from the seven models that contributed daily values of mean and maxi-
mum temperature, surface radiation, and turbulent energy flux outputs for both the piControl and 4 × CO2 
experiments: GFDL-ESM2M, CanESM2, MIROC5, MIROC-ESM, HadGEM2-ES, IPSL-CM5A-MR, and 
MRI-CGCM3. Multimodel mean results are calculated after re-gridding all model outputs onto a common 
2 2   latitude-longitude grid. We considered five additional models that reported daily temperature for 
both the piControl and 4 × CO2 experiments but these models did not provide all surface fluxes. The tem-
perature change patterns we isolate do not change with inclusion of these models. Therefore, to maintain 
consistency with the surface flux quantities, we focus on results for the seven models listed above. Three of 
these seven models (HadGEM2-ES, MIROC-ESM, and MRI-CGCM3) provided surface energy flux outputs 
for only 20 years of simulation time, rather than the full 50 years; for these three models our analysis is 
limited those 20 years.
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2.2. Analysis Method

To investigate changes in the summertime temperature distribution, we examine changes in the mean and 
changes in the upper tail relative to the mean. For mean warming, we use daily mean surface air tempera-
ture (T) and average over all summer days to get summer-mean temperature (T ). We then calculate the dif-
ference in T  between the piControl and 4 × CO2 climatologies (ΔT ). Here, Δ denotes the difference between 
the two climate states and the overbar indicates an average over all summer days. Summer-mean changes 
in other variables are calculated in the same way and reported using similar notation.

For extreme warming relative to mean warming, we examine changes in the upper range of the daily maxi-
mum temperature ( dmxT ), estimated as the difference between the mean of the largest 20% of dmxT  ( top20pct

dmxT ) 
and the mean of all dmxT  values in each climate state. We examine how this spread changes from the control 

climate to the warm climate (i.e.,  top20pct
dmxdmxΔ T T . This term can be interpreted as the difference in the tail-

to-mean spread of dmxT  between the two climate states, or, as the change in the warmest dmxT  ( top20pct
dmxΔT ) minus 

the change in the mean dmxT  ( dmxΔT ). A positive value indicates a stretching of the upper tail of the distribution 
(i.e., the hot extreme warms more than the mean). Sensitivity testing on the choice of threshold (top 20%, top 
10%, and higher) confirms that our conclusions do not depend on this choice.

The top 20% dmxT  in this paper is identified in the following way: for each summer calendar day, we identify 
the 80th percentile of dmxT  among the 50 years (i.e., the warmest 10 years) and average dmxT  over those 10 
years. The average of these values over all summer days is then designated as top20pct

dmxT . An illustration of the 
sampling method is shown in the supporting information. This procedure avoids preferential selection of 
climatologically warmer days within the seasonal cycle and, by extension, limits the confounding influence 
of changes in the seasonal cycle. Comparisons of this sampling method with those sampling the upper per-
centiles of all days directly and after removing the mean seasonal cycle are provided in SI. Composites for 
surface flux variables, including the sensible heat flux (SH), latent heat flux (LH), and radiation fluxes are 
conditioned on dmxT . This is to say, we sample the same calendar days for these variables as for dmxT .

3. Results
3.1. Contrast of Mean and Extreme Warming

The mean warming pattern (Figure  1a) shows the familiar land-sea warming contrast, with the largest 
warming over continental regions in the middle- and high-latitude Northern Hemisphere. The extreme-
relative-to-the-mean warming pattern (Figure  1c) shows no consistent signal over the ocean but strong 
positive values (i.e., amplified warming of the warmest temperatures) over tropical and subtropical land. 
The magnitude of this amplification is as large as 20% of the global mean warming, indicating that global 
warming is projected to warm the warmest days worst (WWWW). Areas where models robustly project 
WWWW include the southern United States, western Europe, central and southern Africa, India, Southeast 
Asia, and South America.

We further bin land grid cells according to the climatological summer-mean Aridity Index (AI) (Gentine 
et al., 2012; Milly & Dunne, 2016), defined as 0 8. / PrRnet Lv  with Rnet the net (longwave plus shortwave) 
radiation flux absorbed at the surface, vL  the latent heat of vaporization, and Pr the precipitation. A large 
AI indicates a dry hydro-climate and a small AI indicates a wet hydro-climate (further details provided in 
supporting information). Changes in mean and extreme-relative-to-the-mean temperatures are shown as 
functions of latitude and AI in Figures 1b and 1d. Dry land regions warm more in the mean (Figure 1b). By 
contrast, moist land regions in the tropics and subtropics are most prone to amplified warming in the ex-
treme-relative-to-the-mean (Figure 1d). Glaciated land in polar regions show less warming in the extreme-
relative-to-the-mean, which is related to increased heat flux into the ground on hot days. As there are more 
complicated ice dynamics and thermodynamics involved in glaciated areas, we exclude these areas from 
the scope of this paper. An alternative view of temperature changes against AI for all land grid cells within 
60°S-60°S is shown in Figure S3.

The results suggest three predominant regimes of summer temperature distribution changes under global 
warming:
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•  Dry land regions (the dry land regime) show relatively large shifts in mean summer temperature but 
little amplification of extreme temperatures relative to the mean.

•  Oceanic regions (the oceanic regime) show a smaller shift in mean summer temperature. Like the dry 
land regime, the oceanic regime shows negligible amplification in the shape of the upper tail.

•  Moist land regions (the moist land regime) show smaller mean warming compared with dry land regions 
but significant elongation of the upper tail of the distribution. This regime shows the most pronounced 
amplification of extreme hot days relative to mean warming.

In the following two subsections, we investigate changes in surface fluxes for these three regimes.

3.2. Warming of the Mean

To better understand the contrasting patterns of mean warming and extreme-day warming in surface air 
temperature, we start by considering the surface enthalpy budget:

 netsfc
sfcR SH LH .s s

Tc G O
t

 
   


 (1)

Here, sc  and s  are the effective specific heat capacity and density of the land/ocean surface layer, sfcT  is 
the land/ocean surface temperature (different from the surface air temperature T), net

sfcR  is the net radiation 
absorbed by the land/ocean surface, SH and LH are the surface sensible and latent heat fluxes (positive up-
ward), and G represents conduction of heat to deeper soil layers (positive downward) or ocean heat-uptake 
O. In equilibrium states, the temperature tendency and the uptake term G/O can be neglected, leaving the 
approximate balance (see more in Figure S5)
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Figure 1. Patterns of multimodel mean changes in selected temperature metrics between the piControl and 4 × CO2 climates: (a, b) Changes in local summer-
mean T relative to global-mean summer-mean T (denoted as T 

 ); and (c, d) changes in the warmest local daily maximum temperatures ( top20pct
dmxT ) relative 

to local summer-mean dmxT . Results from each model are normalized by that model's simulated change in T 
  before averaging to account for differences in 

climate sensitivity among the models. Locations where fewer than six out of the seven models agree on the sign of the change are masked by gray shadings to 
emphasize results that are qualitatively robust among the models. (b) and (d) correspond to the spatial distributions in (a) and (c), respectively, with each dot 
representing a land grid cell. Colors indicate the same fractional temperature changes as in (a) and (c), plotted as a function of latitude and Aridity Index (AI) 
(defined as 0 8. / PrRnet Lv ; see text in Section 3.1 for details).



Geophysical Research Letters

net
sfcSH LH R .  (2)

The Bowen ratio, SH / LH , tracks partitioning between the surface sensible and latent heat fluxes un-
der this energy balance constraint. This partitioning is important because SH directly impacts surface air 
temperature whereas LH does not.

Figure  2 illustrates paired changes between the control climate and the warm climate in selected sum-
mer-mean surface variables. Since most of the consistent and pronounced signals of the upper tail amplifi-
cation (red shading in Figure 1c) appear in the tropics and the subtropics, we focus on 30°S-30°N to analyze 
changes of the underlying surface fluxes. Including land grid cells within 60°S-60°N yields similar results.

Dry land grids (brown dots) show small changes in both SH and LH (mean changes less than 1 W/m2), while 
moist land regions (green dots) show a negative correlation ( 0.75r   ) between SH and LH (Figure 2a). For 
the latter regions, almost all grid cells show increases in SH while some show increases and others decreases 
in LH. This indicates that turbulent flux (SH + LH) is partitioning toward SH (higher Bowen ratio), though 
LH (evapotranspiration) is not necessarily reduced. Over the ocean (blue dots), LH increases for most of the 
grid points (an average of 9 W/m2) while SH decreases (an average of −3 W/m2), indicating a lower Bowen 
ratio in warmer climate.

Relative to wet surfaces, dry surfaces show larger increases in both LWup and LWdown under the 4 × CO2 
equilibrium (Figure 2b). Changes in these two fluxes generally follow a nearly 1:1 relationship. However, 
LWdown tends to increase slightly more than LWup, especially over oceanic and dry land surfaces, implying 
an increase in net longwave radiation (LWnet) absorbed at the surface. Increases in LWup can be attributed 
to increases in (land/ocean) surface temperature, while increase in LWdown can be attributed to increases in 
lower-layer air temperature and greenhouse gas concentrations. Increases in near-surface CO2 and specific 
humidity imply a downward shift in the effective emission level for LWdown, toward warmer temperatures. 
As a result, LWdown may be expected to increase more than LWup even given equal increases in surface tem-
perature and lower-layer air temperature. This appears to be the case for grid points over the dry land. For 
the ocean, the decrease in SH implies that sea surface temperature increases slightly less than the air tem-
perature above, further damping the increase in LWup relative to LWdown. Over moist land surfaces, increases 
in SH and roughly similar increases in LWdown and LWup are both consistent with land surface temperature 
warming more than the air temperature above.

Net radiation (including both LW and solar fluxes) absorbed at the surface increases more over wet surfaces 
than over dry surfaces, while temperature increases more over dry land regions (Figure 2c). Counter-in-
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Figure 2. Paired summer-mean changes in (a) sensible heat (SH) flux and latent heat (LH) fluxes, (b) upwelling and downwelling longwave radiation (LWup 
and LWdown) at the surface, and (c) surface air temperature (T) and net radiation flux (Rnet) at the surface. Each dot represents one grid cell, including all land 
(shaded according to base-climate summer-mean Aridity Index) and ocean (shaded in sky blue) grid cells within 30°S-30°N. The three pink cross signs in each 
panel illustrate paired mean values for grid points over dry land (AI ≥ 10), moist land (AI ≤ 1), and ocean. The mean value and the correlation between the 
paired variables for grid points over the three surface types are also annotated.
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tuitively, changes in surface air temperature do not have strong positive correlation with changes in net 
radiation. A perspective worth-mentioning is that, the changes in surface fluxes in Figure 2 are differences 
between two equilibrium states. They are “end-results” of the temperature and atmospheric composition 
change from the base climate to the warm climate, rather than “drivers” of the temperature change.

Changes in summer-mean T and surface fluxes can thus be summarized as follows:

•  The dry regime reaches its new equilibrium with little change in summer-mean SH or net radiation, in-
dicating that surface temperature and surface air temperature warm by roughly equal amounts. The new 
equilibrium state is reached with compensating adjustments among the components radiative fluxes. 
Limited surface moisture leaves LH little freedom to change under the dry regime.

•  The oceanic regime has no such limitation, allowing more flexibility for LH to increase. Indeed, LH in-
creases significantly to balance an increase in net radiation received at the surface. SH decreases slightly 
in this regime, and the Bowen ratio becomes lower.

•  The moist land regime differs from the dry regime in that the new equilibrium is not reached with com-
pensating adjustments in downwelling and upwelling radiation. It also differs from the oceanic regime 
in that surface moisture supplies are more limited. As a result, both SH and LH adjust to balance the 
additional net radiation received at the surface. The mean Bowen ratio generally increases, though LH 
does not necessarily decrease.

We show in the following subsection that this mean-state change differs from changes on extreme hot 
days, when the moist land regime becomes more water-limited and LH (evapotranspiration) decreases more 
severely.

3.3. Warming of the Extreme

Figure 3 shows the anomalous changes in surface fluxes and temperature on summertime extreme hot days 
relative to changes in the mean state. Surface SH, LH, and radiation fluxes are composited on dmxT .

Results for dry land regions consistently cluster near the origin, indicating that these regions exhibit no ob-
vious amplification in changes of either extreme temperature or associated surface fluxes. The distribution 
of dmxT  and related surface energy fluxes shift in tandem with the mean state under global warming, with 
little elongation of the “hot tail.”

Over moist land regions, we find a strong anticorrelation ( 0.7r   ) between SH and LH (Figure 3a). For 
most locations, extreme hot days are characterized by amplified increases in SH and amplified decreases 
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Figure 3. Same as in Figure 2, but for conditions in extreme hot days relative to the mean state. Land grid cells within 30°S-30°N are plotted. Ocean grid cells 
are omitted.

(a) (b) (c)
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in LH. Negative changes in LH are more ubiquitous for changes in extreme hot days than mean state (Fig-
ure 2a). These results imply that suppressed evapotranspiration during heatwave events further partitions 
the surface turbulent flux toward SH, amplifying increases in the Bowen ratio and exacerbating warming 
on the hottest days. Corresponding changes in LWup and LWdown are positively correlated and closely follow 
the 1:1 line, with larger changes for smaller values of the climatological AI in general (Figure 3b). The 
dependence on the AI is opposite to that found for the mean state (Figure 2b), consistent with simulated ex-
treme-relative-to-mean changes being most pronounced for climatologically moist land regions. There are a 
handful of dots with very small climatological AI values (very moist) located very close to the origin—these 
are grid cells along the southern edge of the Tibetan plateau. High orographic precipitation rates simulated 
in these regions lead to very small AI values, but the land surface properties there differ from the typical 
tropical/subtropical moist land.

Net radiation changes are near zero for dry land regions and slightly negative on average for moist land re-
gions (Figure 3c), although the latter exhibits a large spread that includes both positive and negative values. 
As for changes in the mean state, increases in temperature on the hottest days do not show apparent positive 
correlation with changes in net radiation.

4. Discussion: Suppressed Evapotranspiration Exacerbates Warming
Warming in both the mean and the extreme is greater over land than over ocean. Current arguments for 
this amplified warming over land include larger lower-tropospheric temperature lapse rates over land than 
over ocean (including later refinements of this idea based on convective quasiequilibrium and weak-free 
tropospheric temperature gradient; Byrne & O’Gorman, 2013, 2016, 2018; Joshi et al., 2008), and land sur-
face feedbacks involving soil moisture or vegetation responses to climate change (e.g., Berg et al., 2016; 
Donat et al., 2017; Fischer et al., 2007; Jaeger & Seneviratne, 2011; Lemordant & Gentine, 2018; Lorenz 
et al., 2016). The former was used to compare mean equilibrium states, and in this framework the key con-
trol of amplified warming over land is the boundary-layer relative humidity, which determines the lifted 
condensation level above which the lapse rate is reduced due to latent heat release. The latter was applied 
to both mean equilibrium states and transient states (extreme hot days), and in this latter framework the 
key control of amplified warming is the surface water availability, which determines the Bowen ratio and 
thereby SH which directly contributes to the boundary-layer heating. Here, we focus more on the latter and 
compare its roles in both mean-state and extreme-day warming.

Figure 4 shows spatial distributions of changes in summer-mean T, SH, and LH over land (Figures 4a–4c) 
along with corresponding changes for extreme days relative to the mean state (Figures 4d–4f). For the mean, 
we find general increases in SH and Bowen ratio over relatively moist tropical and subtropical land areas. 
However, suppression of evapotranspiration (decreases in LH) is neither widespread nor particularly se-
vere. For extreme-relative-to-mean changes, amplified warming over moist land areas is strongly associated 
with amplified increases in SH (spatial correlation within 30°S-30°N is 0.66) and amplified decreases in 
LH (spatial correlation within 30°S-30°N is −0.69). These signals indicate that 40%–50% of the variance in 
amplified extreme warming over tropical land areas can be explained by enhanced partitioning of surface 
energy flux toward SH.

For a more quantitative estimate, we can use the results shown in Figures 4d–4f to relate a 1 K amplification 
(i.e.,  top20pct

dmxdmxΔ 1T T   K) to an 8 W m−2 increase in SH. This value is consistent with the amount of 

energy needed to heat a 1-km deep layer of boundary-layer air at a rate of 1 K d−1. It is also consistent with 
the SH feedback parameter calculated from a theoretical equilibrium model of boundary-layer air over land 
(Cronin, 2013), although this equilibrium framework does not directly extend to the transient hot days as 
defined here.

The most likely explanation for the redistribution of turbulent enthalpy flux from LH to SH during extreme 
heat events is suppressed evapotranspiration. Suppression of evapotranspiration may arise from reduced 
evaporation (e.g., drier soil, less vegetation-intercepted water), reduced transpiration (e.g., stomatal closure 
associated with CO2 fertilization and/or heat stress), or some combination of the two. As soil and canopy 
water declines, the surface is less able to release the radiative energy it absorbs (Rnet) via LH. As a conse-
quence, a greater proportion of the turbulent enthalpy flux is released via SH.
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The apparent importance of suppressed evapotranspiration can also explain why the amplification of warm-
ing in the extreme (Figures 1c and 4d) emerges mainly over moist land regions. For the warming of extreme 
events to be substantially amplified relative to the mean warming, the local surface energy balance must be 
sensitive to fluctuations in moisture availability. In other words, the surface must have sufficient moisture to 
support strong evapotranspiration fluxes in the mean state; flux partitioning at such surfaces is sensitive to 
drying or stress-related stomatal closure, leading to suppressed evapotranspiration and larger Bowen ratios 
on extreme days. In the oceanic regime, the moisture pool is effectively infinite and the surface is not subject 
to drying, so that surface moisture supply places no comparable constraint on evaporation. Conversely, in 
the dry regime, the surface mean state is already dry, reducing potential differences in evapotranspiration 
between the mean state and extreme events. Therefore, elongation of the upper tail of summer temperature 
distribution is distinctive to moist land regions, where surface moisture supplies are both relatively plentiful 
and can vary substantially in time.

5. Summary and Outlook
We compare patterns of summertime mean warming and warming associated with the hottest summertime 
daily maximum temperatures (Figure 1). We find that dry and wet surfaces experience different changes in 
mean and extreme regions of the temperature distribution, which we classify into three distinct regimes:

•  Dry land regime: the entire temperature distribution is shifted, with pronounced warming in the mean 
state and little amplification in the tail relative to the mean.

•  Moist land regime: mean warming is smaller than the dry land regime, but warming of extreme hot 
days is amplified, indicating an elongated upper tail of the temperature distribution. This amplification 
(Figure 1c) is compounded on top of the land-ocean contrast in mean warming (Figure 1a), and reaches 
magnitudes as large as 20% of the global mean warming.

•  Oceanic regime: mean warming is weaker than over land surfaces, with no evident change in the length 
of the upper tail.

Adjustment of the surface flux balance differs among these three regimes. In the dry land regime there is 
little change in the turbulent SH or LH fluxes; the additional energy is balanced mainly via radiative flux 
adjustment. By contrast, in the oceanic regime, the surface turbulent flux partitions toward LH (a smaller 
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Figure 4. Upper row: spatial patterns of changes in summer-mean (a) temperature, (b) sensible heat flux (SH), and (c) latent heat flux (LH) over land regions. 
Lower row: spatial patterns of changes on the hottest days top20pct

dmxT  relative to changes in summertime mean dmxT  (d), and corresponding changes in SH (e) and 
LH (f).
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Bowen ratio), while in moist land regime the surface turbulent flux partitions toward SH (a larger Bowen 
ratio). Increases in the Bowen ratio over moist land regions are even more pronounced on extreme hot days, 
as suppressed evapotranspiration (which is not evident in the mean state change) amplifies the effects of 
increased SH. This exacerbation of suppressed evapotranspiration on hot days explains why the amplified 
warming in the extreme emerges mainly over moist land regions (Figures 1c and 4d): Over moist land, 
moisture is potentially limited (unlike the ocean) and mean evapotranspiration is large enough that its dis-
ruption substantially alters the Bowen ratio (unlike dry land regions).

There remain a number of issues to resolve. Figure 4 shows that the Bowen ratio tends to increase with 
warming over most tropical and subtropical land regions, but with different quantitative increases between 
the mean state and the extreme state. When and why is surface evapotranspiration suppressed? Is this sup-
pression typically rooted in local soil moisture, vegetation, or radiation responses? Early results indicate that 
the answers to these questions vary considerably across locations and models. A detailed analysis is there-
fore needed to identify a generalizable framework for understanding the contributions of surface drying to 
heat events over different surface types in a warmer world.

Data Availability Statement
CMIP5 model outputs used in this study are downloaded from CMIP5 data archive (https://cmip.llnl.gov/
cmip5/), as well as CEDA data archive (http://data.ceda.ac.uk/badc/cmip5/data/cmip5/output1/). The au-
thors appreciate institutions that generate and host these data.
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